Feature Extraction for Nonparametric Discriminant Analysis
نویسندگان
چکیده
منابع مشابه
Unsupervised Discriminant Projection Analysis for Feature Extraction
This paper develops an unsupervised discriminant projection (UDP) technique for feature extraction. UDP takes the local and non-local information into account, seeking to find a projection that maximizes the non-local scatter and minimizes the local scatter simultaneously. This characteristic makes UDP more intuitive and more powerful than the up-to-date method ocality preserving projection (LP...
متن کاملOrthogonal vs. uncorrelated least squares discriminant analysis for feature extraction
In this paper, a new discriminant analysis for feature extraction is derived from the perspective of least squares regression. To obtain great discriminative power between classes, all the data points in each class are expected to be regressed to a single vector, and the basic task is to find a transformation matrix such that the squared regression error is minimized. To this end, two least squ...
متن کاملA multi-manifold discriminant analysis method for image feature extraction
In this paper, we propose a Multi-Manifold Discriminant Analysis (MMDA) method for an image feature extraction and pattern recognition based on graph embedded learning and under the Fisher discriminant analysis framework. In an MMDA, the within-class graph and between-class graph are, respectively, designed to characterize the within-class compactness and the between-class separability, seeking...
متن کاملPush-Pull marginal discriminant analysis for feature extraction
Marginal information is of great importance for classification. This paper presents a new nonparametric linear discriminant analysis method named Push-Pull marginal discriminant analysis (PPMDA), which takes full advantage of marginal information. For two-class cases, the idea of this method is to determine projected directions such that the marginal samples of one class are pushed away from th...
متن کاملDecision boundary feature extraction for nonparametric classification
Feature extraction has long been an important topic in pattern recognition. Although many authors have studied feature extraction for parametric classifiers, relatively few feature extraction algorithms are available for non-parametric classifiers. In this paper we propose a new feature extraction algorithm based on decision boundaries for nonparametric classifiers. We note that feature extract...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2003
ISSN: 1061-8600,1537-2715
DOI: 10.1198/1061860031220